Home Research Co-Workers Publications Institute ACRD Testlab News/Events Links

Englisch Deutsch


The core research interest of the biofabrication platform is producing fine scaffolds by electrostatically drawing polymer melts onto a translating collector stage. MEW allows the 3D printing of new biomaterials with nano- and microscale structures for tissue engineering and regenerative medicine. The 3D writing machines are custom-built and can produce fine structured scaffolds using a broad range of materials.

Melt electrospinning writing is a new and powerful process that biomedical engineers can use to develop materials for both clinical and in vitro applications. It produces fine and flexible structures that are cell invasive and unique. For further information on this technology or to register an interest these 3D writing machine, feel free to contact me using the form on this website.

Prof. Dr. Paul Dalton

Telephone +49(0)931 20174081

Ph.D. students:

M. Eng. Gernot Hochleitner
Melt-Elektrospinning thermoplastischer Biopolymere
09 31 - 201 73530

Dipl.-Ing. Tomasz Jüngst
3D-Strukturierung von Scaffolds für das Tissue Engineering
09 31 - 201 73590

M. Sc. Carina Blum
09 31 - 31 80587

Arzt Almoataz Bellah Youssef
09 31 - 201 73552


G. Hochleitner, A. Youssef, A. Hrynevich, J.N. Haigh, T. Jüngst, J. Groll, P.D. Dalton. Fibre pulsing during melt electrospinning writing. BioNanoMaterials 2016

T.D. Brown, P.D. Dalton, D.W. Hutmacher. Melt Electrospinning Today: An Opportune Time for an Emerging Polymer Process. Progress in Polymer Science 2016; published online

F. Chen, G. Hochleitner, T. Woodfield, J. Groll, P.D. Dalton, B.G. Amsden. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Biomacromolecules 2016, published online

T. Jüngst, W. Smolan, K. Schacht, T. Scheibel, J. Groll. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chemical Reviews 2016; 116(3): 1496-1539

J.N. Haigh, Y.M. Chuang, B. Farrugia, R. Hoogenboom, P.D. Dalton, T.R. Dargaville. Hierarchically Structured Porous Poly(2-oxazoline) Hydrogels. Macromolecular Rapid Communications 2016; 37(1): 93-99

G. Hochleitner, T. Jüngst, T.D. Brown, K. Hahn, C. Moseke, F. Jakob, P.D. Dalton, J. Groll. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 2015; 7, published online

T. Jüngst, M.L. Muerza-Cascante, T.D. Brown, M. Standfest, D.W. Hutmacher, J. Groll, P. Dalton. Melt Electrospinning onto Cylinders: Effects of Rotational Velocity and Collector Diameter on the Morphology of Tubular Structures. Polymer International 2015; published online

J. Visser, F.P.W. Melchels, J.E. Jeon, E.M. van Bussel, L.S. Kimpton, H.M. Byrne, W.J.A. Dhert, P.D. Dalton, D.W. Hutmacher, J.Malda. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nature Communications 2015; 6, published online

M.L. Muerza-Cascante, D. Haylock, D.W. Hutmacher, P.D. Dalton. Melt Electrospinning and Its Technologization in Tissue Engineering. Tissue Engineering Part B: Reviews 2015; 21(2): 187-202

T.D. Brown, F. Edin, N. Detta, A.D. Skelton, D.W. Hutmacher, P.D. Dalton. Melt electrospinning of poly(ε-caprolactone) scaffolds: Phenomenological observations associated with collection and direct writing. Materials Science & Engineering C 2014; 45: 698-708

G. Hochleitner, J.F. Hümmer, R. Luxenhofer, J. Groll. High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds through melt electrospinning writing. Polymer 2014; 55(20): 5017-5023

Updated: May 30, 2019  © FMZ Uni Würzburg     Privacy policy    Disclaimer    Imprint